CIRC Meeting 2019 Bologna, Italy, October 26, 2019

Deep vein thrombosis and inflammation, microcirculation, and influence of compression

Takashi Yamaki M.D.

Department of Plastic and Reconstructive Surgery Tokyo Women's Medical University Medical Center East

Disclosure

Takashi Yamaki M.D. Deep vein thrombosis and inflammation, microcirculation, and influence of compression

Financial disclosure: I do not have any relevant financial relationships with any commercial interests

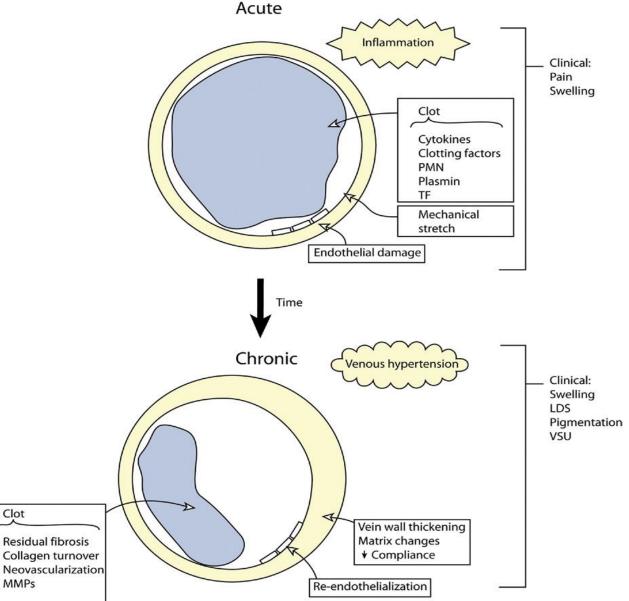
Unlabeled/unapproved uses disclosure: I do not use any unlabeled or unapproved materials

Postthrombotic syndrome (PTS)

Common late complication of acute DVT

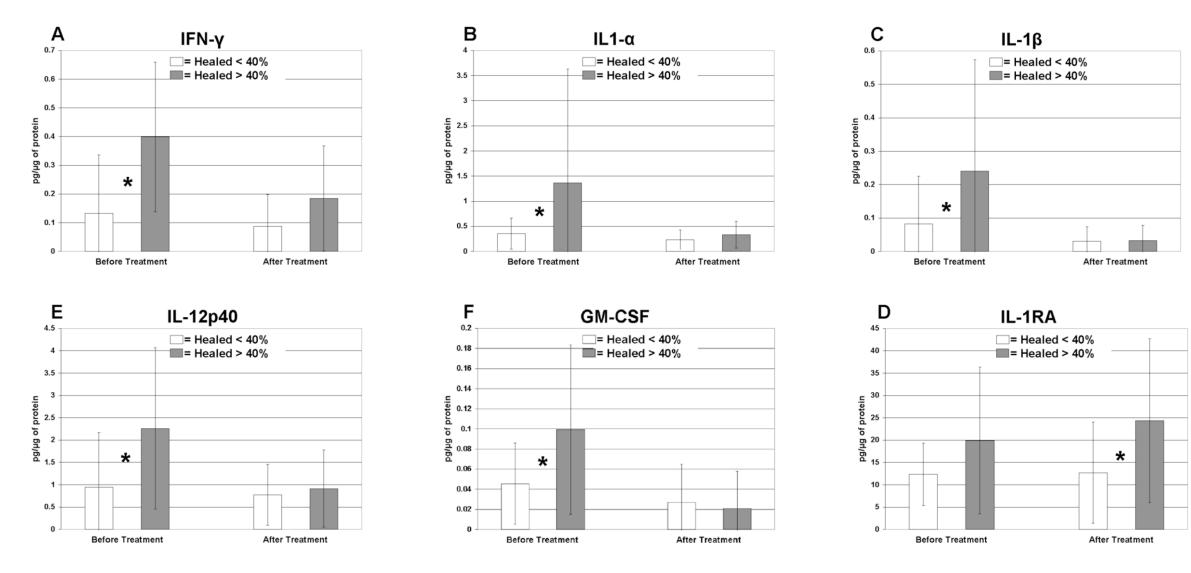
 Develops in almost half of all patients < 2 years, with severe symptoms, including venous ulceration, in 3%

Occurs despite appropriate anticoagulation


 PTS symptoms developed in 25-46% of patients after anticoagulation alone in the era of vitamin K antagonists

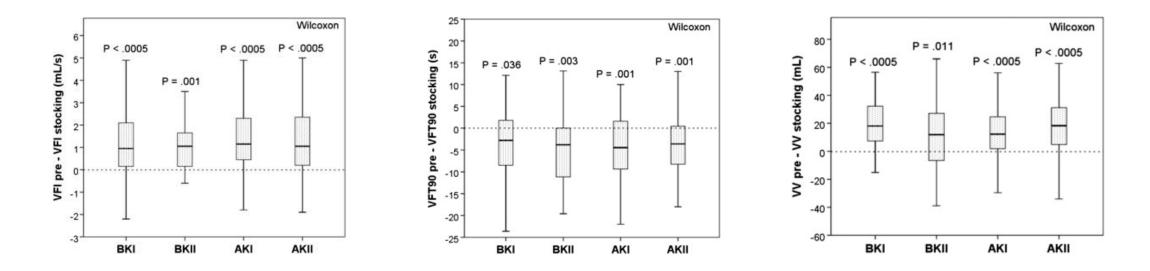
Different PTS classifications

- For assessment of PTS
 - Villalta scale
 - Ginsberg measure
 - Brandjes scale
- For assessment of chronic venous insufficiency
 - CEAP classification
 - VCSS
 - Widmer



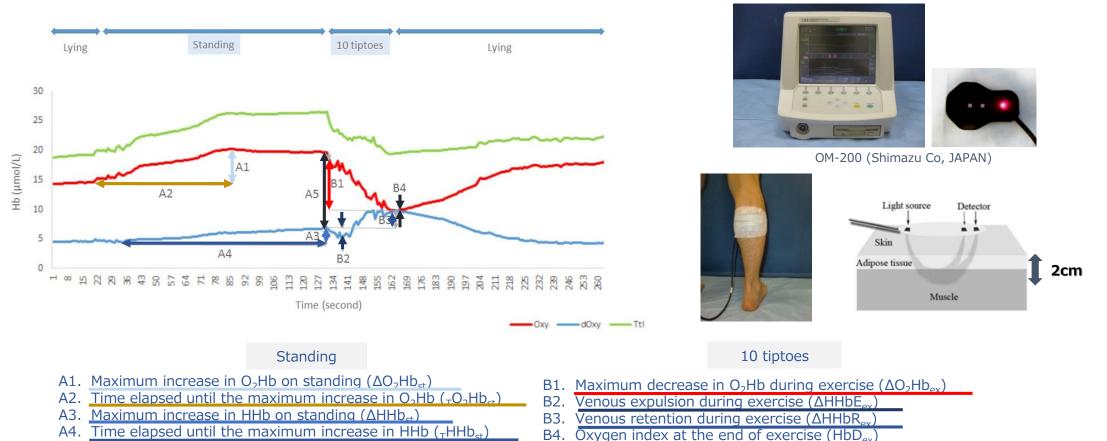
Pathophysiology of postthrombotic vein wall injury

- Obstructive DVT is more injurious than perithrombus blood flow by promoting the inflammatory process.
- After DVT, mediators such as proteinases, growth factors, and cytokines released are likely the causal factor.
- Leukocytes may mediate release and activate matrix metalloproteinase 2 (MMP-2) and MMP-9, as well as promote vein wall fibrosis.
- The thrombus promotes vascular smooth muscle cell phenotypic change from a contractile to synthetic state, and the synthetic inflammatory vascular smooth muscle cell promotes collagen and other matrix accumulation and may increase vein wall fibrosis and stiffness.

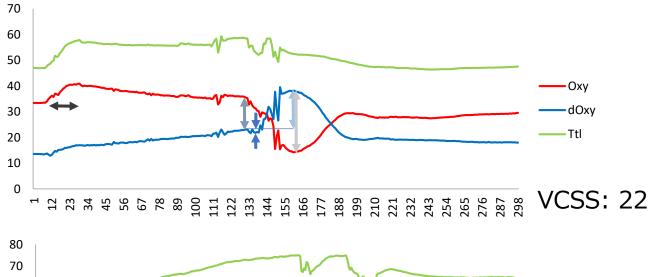

Inflammatory cytokine levels in CVU before and after compression therapy

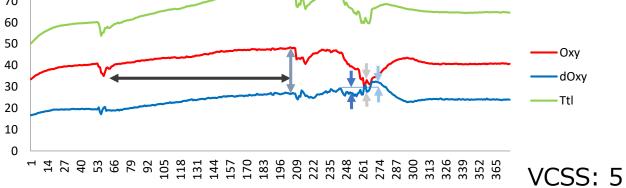
* = statistically significant with P < 0.05

Beidler SK et al. *J Vasc Surg* 2009; 49: 1013-20


GCS significantly improve hemodynamic performance in PTS

	VFI improvement	<i>r</i> value (Spearman rho test)	P-value (Spearman rho test)
Class I (18-21 mm Hg)	1.10 (0.3-2.18)	.420	<.0005
Class II (23-32 mm Hg)	1.05 (0.2-2.08)	.350	.001
Below knee	1.0 (0.13-2.08)	.327	.003
Above knee (thigh-length)	1.10 (0.4-2.38)	.452	<.0005
All stockings summary	1.10 (0.2-2.10)	.390	<.0005


Lattimer CR et al. J Vasc Surg 2013; 58: 158-65

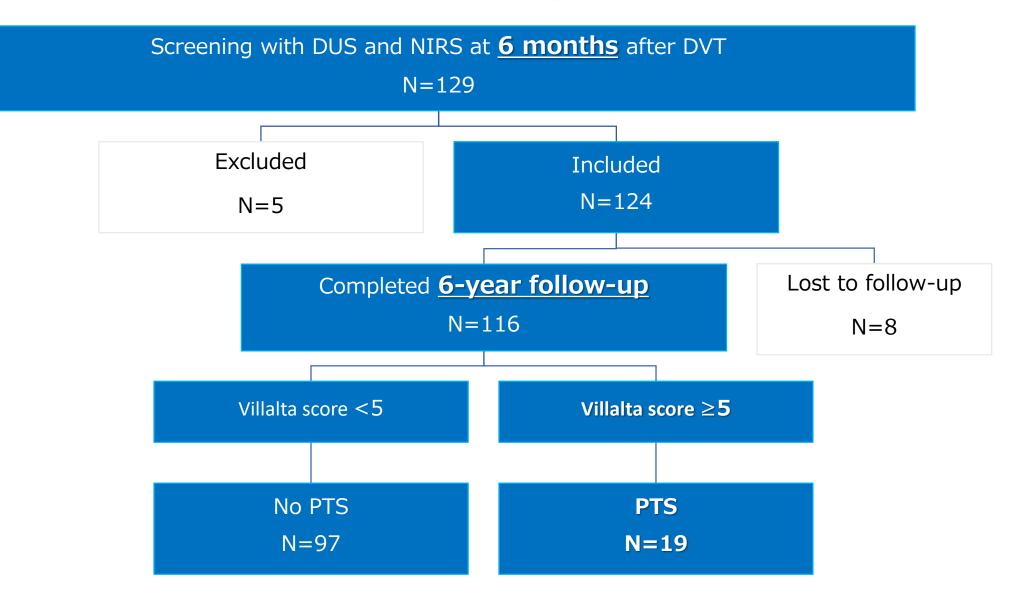

Measurements of changes in calf muscle oxygenation in patients with CVD using near-infrared spectroscopy (NIRS)

- A5. Oxygen index at the end of standing (HbD_{st})
- Oxygen index: HbD = O_2Hb -HHb

NIRS-derived parameters between patients with and without PTS

	-		
Variable	PTS n = 21 patients	No PTS n = 22 patients	<i>P</i> -value*
On standing			
$\Delta O_2 Hb_{st}$ (µmol/L)	11 ± 19	11 ± 6	0.131
ΔHHb _{st} (µmol/L)	9 ± 11	7 ± 3	0.876
HbD _{st} (µmol/L)	12 ± 8	22 ± 11	0.001
$_{\rm T}O_{\rm 2}Hb_{\rm st}$ (s)	43 ± 41	107 ± 58	0.001

Standing


	10 tipto	es	
Variable	PTS n = 21 patients	No PTS n = 22 patients	<i>P</i> -value*
$\Delta O_2 Hb_{ex}$ (µmol/L)	-14 ± 11	-10 ± 5	0.083
ΔHHbE _{ex} (µmol/L)	-2 ± 1	-3 ± 3	0.016
ΔHHbR _{ex} (µmol/L)	8 ± 7	3 ± 2	0.001
HbD _{ex} (µmol/L)	-10 ± 16	10 ± 10	<0.001

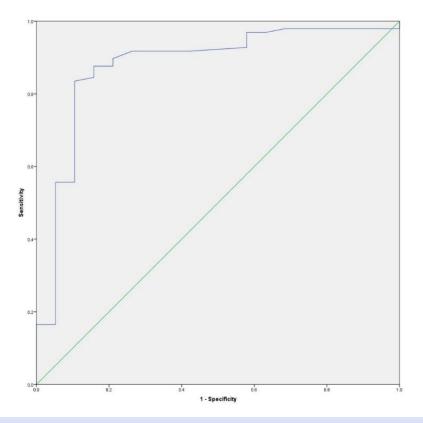
40.11.1

Wilcoxon non-parametric rank sum test. Values expressed as mean \pm SD.

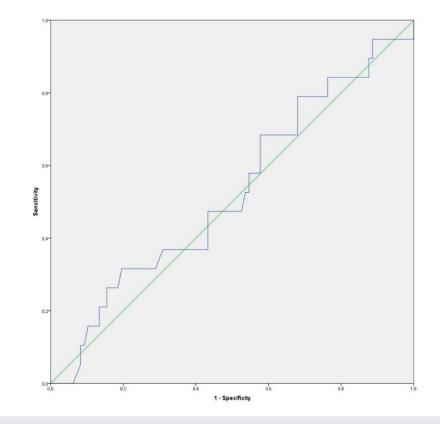
Yamaki T et al. J Vasc Surg Venous Lymphat Disord 2014;2:424-32

Study flow diagram

Yamaki T et al. J Vasc Surg Venous Lymphat Disord 2016;4:446-54


Patients' characteristics compared between patients with and without PTS

	No PTS n = 97	PTS n = 19	P-value
Characteristics at initial visit			
Age (years)	61.3 ± 18.3	57.2 ± 15.5	0.273
Male gender, no (%)	32 (33.0)	10 (52.6)	0.103
Body mass index (kg m ²)	22.6 ± 3.1	25.2 ± 2.3	0.343
Duration of anticoagulation (months)	18.1 ± 28.2	18.9 ± 14.7	0.899
Risk factors, no (%)			
Active cancer	14 (14.4)	1 (5.3)	0.276
Congenital heart failure	1 (1.0)	0 (0)	0.657
Hormone replacement therapy	12 (12.4)	4 (21.1)	0.316
Immobilization	12 (12.4)	0 (0)	0.105
Renal failure	5 (5.2)	2 (10.5)	0.369
Surgery	40 (41.2)	5 (26.3)	0.222
Stroke	2 (2.1)	2 (10.5)	0.064
Idiopathic DVT	12 (12.4)	7 (36.8)	0.008
Distribution of DVT, no (%)			
Ilio-femoral DVT	14 (14.4)	8 (42.1)	0.005
Femoro-popliteal DVT	32 (33.0)	10 (52.6)	0.103
Calf DVT	51 (52.6)	1 (5.3)	<0.0001
Venous abnormality at 6 month, no (%)			
No abnormalities	52 (53.6)	1 (5.2)	<0.0001
Obstruction	16 (16.5)	5 (26.3)	0.309
Reflux	12 (12.4)	4 (21.1)	0.316
Obstruction and reflux	17 (17.5)	9 (47.4)	0.004


NIRS-derived parameters compared between patients with and without PTS at 6 months

	PTS n = 19	No PTS n = 97	p-value
On standing			
$\Delta O_2 Hb_{st} (\mu mol/L)$	8.4 ± 5.5	10.6 ± 9.9	0.438
ΔHHb _{st} (µmol/L)	10.5 ± 10.4	14.4 ± 6.7	0.180
HbD _{st} (µmol/L)	12.8 ± 13.5	10.3 ± 14.8	0.609
_T O ₂ Hb _{st} (seconds)	37.6 ± 32.7	62.9 ± 35.0	0.039
_T HHb _{st} (seconds)	190.4 ± 73.3	209.9 ± 59.4	0.382
During exercise			
$\Delta O_2 Hb_{ex}$ (µmol/L)	-14.8 ± 10.1	-11.2 ± 6.9	0.216
ΔHHbE _{ex} (μmol/L)	-3.4 ± 3.9	-5.8 ± 2.6	0.040
ΔHHbR _{ex} (µmol/L)	8.1 ± 8.6	5.9 ± 3.4	0.281
HbD _{ex} (µmol/L)	-6.2 ± 24.7	-5.3 ± 13.7	0.908

Ability of NIRS-derived confounding parameters to predict PTS

Cut off: $_{T}O_{2}Hb_{st} \leq 48$ seconds AUC 0.88, 95% CI, 0.80-0.93, p<0.0001 with a sensitivity of 89.5% and a specificity of 83.5%.

Cut-off: ΔHHbE_{ex} > -0.87 μmol/L AUC 0.53, 95% CI 0.43-0.62, p=0.732 with a sensitivity of 31.6% and a specificity of 80.4%.

Yamaki T et al. J Vasc Surg Venous Lymphat Disord 2016;4:446-54

Univariate analysis to evaluate potential predictors of PTS (p<0.1)

Variable	OR	95% CI	p-value
Variables at initial visit			
Risk factors for DVT			
Stroke	5.59	0.74-42.41	0.064
Idiopathic DVT	4.13	1.36-12.55	0.008
Distribution of DVT			
Ilio-femoral DVT	4.31	1.48-12.60	0.005
Variables at 6-month			
Venous abnormalities			
Obstruction and reflux	4.24	1.50-12.00	0.004
NIRS-derived parameters			
_T O2Hb _{st} ≤48 seconds	43.03	9.04-204.81	<0.001

Multivariate logistic regression analysis to evaluate potential predictors of PTS

Variable	β	Wald	OR	95% CI	p-value
Stroke	1.00	0.31	2.73	0.08-92.63	0.577
Idiopathic DVT	-0.02	0.01	0.98	0.16-5.99	0.980
Ilio-femoral DVT	1.40	2.45	4.07	0.02-23.63	0.118
Obstruction and reflux	1.57	4.00	4.81	10.3-22.36	0.045
_T O2Hb _{st} ≤48 seconds	3.98	17.78	53.73	8.43-342.41	<0.001

Acute effect of GCS on calf muscle oxygenation – Initial pilot study with 13 CVI patients –

	No GCS	Class I (18-21 mm Hg)	Class II (23-32 mm Hg)	P-value*		
		N=13				
Standing						
$\Delta O_2 Hb_{st}$ (µmol/L)	21.3 ± 19.9	19.6 ± 21.6	21.7 ± 19.3	0.962		
ΔHHb _{st} (µmol/L)	15.8 ± 14.7	17.0 ± 16.9	16.0 ± 14.7	0.976		
HbD _{st} (µmol/L)	18.7 ± 12.2	14.8 ± 10.9	17.8 ± 10.9	0.656		
_T O ₂ Hb _{st} (s)	26.5 ± 14.3	46.8 ± 49.6	58.5± 57.5	0.194		
_T HHb _{st} (s)	132.5 ± 34.7	141.4 ± 24.5	14.5± 35.3	0.573		
10 tiptoes						
$\Delta O_2 Hb_{ex}$ (µmol/L)	-23.6 ± 19.7	-24.0 ± 19.1	-24.4 ± 19.5	0.994		
ΔHHbE _{ex} (µmol/L)	-7.5 ± 8.0	-9.9 ± 9.9	-9.8 ± 10.1	0.760		
ΔHHbR _{ex} (µmol/L)	11.9 ± 13.4	9.8 ± 10.9	5.7 ± 9.2	0.370		
HbD _{ex} (µmol/L)	-12.8 ± 22.9	-11.2 ± 19.3	-5.7± 21.9	0.680		

*One-way analysis of variance (ANOVA)

Conclusions

- The vascular inflammatory response involves complex interaction between inflammatory cells (neutrophils, lymphocytes, monocytes, macrophages), endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and extracellular matrix (ECM).
- Persistent increase in cytokines are associated with venous hypertension.
- Use of compression stockings decreases pro-inflammatory and increases antiinflammatory cytokines by reducing venous hypertension.
- Use of compression stockings improves global venous hemodynamics.
- Although, there are no meaningful results obtained at this moment, compression stockings may have positive effects on calf muscle microcirculation.